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Abstract – 
The construction industry in Japan is facing an 

increasing shortage of labor that has resulted viable 
demands for automation and robotics. This research 
study applies an approach based on game theory to 
model cooperation in an uncoordinated autonomous 
environment. A set of construction machines have 
been designed to complete a joint task that needs 
cooperation without a priori knowledge of how 
willing or likely other agents are to cooperate. Our 
simulation results show that the crisped strategy 
model best-promoted cooperation and successfully 
executed the model construction task by using the 
robot operating system 2. 
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1 Introduction 
Automatic construction is being promoted strongly in 

the construction field in Japan. This field is suffering 
from the aging population problem that mainly comprises 
the construction industry and the shortage of skilled labor 
who can operate construction machines. To deal with 
these problems, efforts are currently expended to take 
advantage of the rapidly improving digital technology to 
automate constructions in ways in which operations can 
be conducted remotely and autonomously [1]. 

In the construction field, it is crucial for machines to 
cooperate with each other. This is because many types of 
machines are involved and they must achieve one 
common goal by associating various operations and tasks. 
For example, a machine should conduct its task in a rush 
if it is the bottleneck in the entire construction, or it 
should yield its resources and its flow line to others if it 
has some freedom to do so. To achieve the autonomous 
construction goal, it is important to adopt task-
management approaches and cooperation mechanisms in 
the construction field. 

Therefore, this study aims to design a dynamic 

collaboration mechanism that enables construction 
machines to engage in their assigned tasks and cooperate 
with each other by applying the mathematical 
cooperation game theory models to the construction field. 
This study is based the concept that cooperative 
construction can be realized through individual efforts by 
deriving the optimal decision that considers interactions 
among multiple agents (i.e., without the coordination 
through central control) and established models that 
enable machines to make individual judgments. We 
focused on borrowing tasks conducted by more than two 
machines as an example of construction tasks and solves 
the borrowing flow-line designing problem in an actual 
working environment. 

2 Related and Previous Research 

2.1 Mathematical Approach of Cooperation 
Using a Game Theory Approach 

Rational choice theory is a field in mathematics that 
is based on model cooperation. Based on this theory, the 
components of society are modeled as the agents or 
mathematical expressions of the environment, and the 
interaction of each component is described using a 
specific equation. For example, Bonabeau [2] describes 
complex social systems to enable the expression of 
emergent phenomena based on the interactions of all 
individual agents with others. Dynamic collaboration is 
considered an emergent phenomenon that appears as the 
result of the interactions of agents involved in task 
execution (e.g., making a concession effort not to prevent 
the flow line of other machines reduces the completion 
time of the overall task); accordingly, machine 
cooperations can be reproduced by describing 
interactions in agent-based models and with the use of 
mathematics. 

Gambetta [3] studied the relationship between 
cooperation and risk of choice. In addition, they defined 
the trust of agents in other components from a prediction 
viewpoint; they suggested that the observation of other 
components would transit in accordance with their 
subjective intention, as a means of expression in the 
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subjective provability, and discussed the relationship 
between the freedom of choice and subjective trust 
probability. Additionally, Vives and Feldman [4] 
analyzed prosocial behavior, i.e., cooperation, from the 
viewpoint of absolute risk and ambiguity, and observed 
the relationship between one’s patience to ambiguity and 
the emergence of prosocial behavior. The term ambiguity 
used in the study by Vives and Feldman [4] can be 
reworded to the term “subjective volatility to future 
events.” Therefore, it is mentioned [4] that the degree of 
preference toward the volatility to future events may have 
a strong affection on the emergence of prosocial behavior. 

This study considers the emergence of cooperation in 
the context of optimization in agent-based simulation. 
Generally, in agent-based simulation that uses game 
theory approach, a certain pay-off game and the space of 
actions for it in the environment are proposed (such as 
those proposed by Chen et al. [5]) and the relationship 
between cooperation and action determination way are 
discussed. However, this study focuses on task 
optimization in the dynamic programing designed by 
Bellman equation and evaluates the degree of system 
optimization. In other words, this study contributes to the 
total system optimization by enabling the agents to 
cooperate in their action space by game theory approach 
without coordinating with each other. This approach 
helps the agents to determine their actions more flexibly 
from the environment with cooperation in the 
optimization context, and this enables the efficient 
globally-optimized autonomous construction. 

2.2 Deep Reinforcement Learning 
One of the major deep reinforcement learning 

approaches is achieved by the Deep Q-Network (DQN) 
[6]. This approach adopts an optimum solution that 
assimilates the method of deep machine learning into 
value-based reinforcement learning. 

In the value-based reinforcement learning method 
represented by DQN, Q-value, the totality of the present 
value of future rewards, and the assembly of the action 
strategy of the agent itself {𝑎𝑠}  (or the probability of 
action choice of the agent itself, 𝜋(𝑎, 𝑠) ) are being 
explored. This method enables the exploration of 
maximized rewards from a prospective viewpoint (by 
solving this equation, system optimization will be 
completed). 

At some time point 𝑡0, the totality of the net present 
value of rewards can be written as (1) using the action 𝑎 
and the state 𝑠: 

𝐸(𝑠𝑡0
|𝑎)

= 𝑟(𝑠𝑡0
, 𝑎) +  𝛾 [ max

{𝑎𝑡𝑖
}𝑖=1
∞

∑ 𝛾𝑖−1

∞

𝑖=1

𝑟(𝑠𝑡𝑖
, 𝑎𝑡𝑖

)]

(1) 

where 𝑟(𝑠, 𝑎) is a rewarding function that decides the 

amount of reward from states 𝑠 and the agent’s actions 𝑎, 
and 𝛾 is the time-discount rate (hereinafter, the subscripts 
of time are abbreviated.) Furthermore, {𝑠𝑡}, the assembly 
of transition 𝑠 is dependent on action 𝑎. The indentation 
of 𝑡  on the action 𝑎  and the state 𝑠  indicates that the 
value is for time 𝑡. 

The agent makes its choice that maximizes its total 
net present value of rewards; in other words, the action 
that maximizes equation (1) at each time 𝑡. From this 
perspective, the total net value of rewards in this 
circumstance is called the value (or value function) of the 
state 𝑠𝑡 , 𝑄(𝑠𝑡) , at time 𝑡  (however, 𝑄(𝑠𝑡)  can be 
determined only by the state 𝑠𝑡  and not from {𝑎𝑠}  or 
𝜋(𝑎, 𝑠)). This is because the agent can select its choice 
only by observing the state at each time point. 
Thus, the value function 𝑄(𝑠𝑡)  can be expressed by 
equation (2),  

𝑄(𝑠𝑡) = max
𝑎

{𝑟(𝑠𝑡 , 𝑎) +  𝛾 [ max
{𝑎𝑡}𝑡=1

∞
∑ 𝛾𝑡−1

∞

𝑡=1

𝑟(𝑠𝑡 , 𝑎𝑡)]} 

(2) 
Focusing on the recursive part on the right side, equation 
(2) can be rewritten as follows:

𝑄(𝑠𝑡) = max
𝑎

{𝑟(𝑠𝑡 , 𝑎)  + 𝛾𝑄(𝑠𝑡+1) } (3) 

Equation (3) is called the Bellman equation and is 
extensively used to solve the optimization problem in 
dynamic programming, such as reinforcement learning. 
The estimation of 𝑄(𝑠𝑡) in this equation is equivalent to 
the explosion of optimized action 𝑎𝑡 at an optional time 
𝑡  (this is because the optimized action 𝑎𝑡  can be 
expressed according to equation (4): 

𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑟(𝑠𝑡 , 𝑎)  + 𝛾𝑄(𝑠𝑡+1)) (4) 

2.3 Deterministic Policy Gradient Algorithms 
(DDPG) 

DDPG is a deep-learning algorithm that was 
presented by Silver et al. [7]. This algorithm consists of 
two models, namely, the actor-critic. Because the 
application of the concept of dividing estimation into 
these two models was very convenient for estimating the 
value function in multiagent tasks, this study established 
a multiagent, deep-learning model which was based on 
the DDPG network. 

DDPG is the model used for estimating the value 
function 𝑄(𝑠𝑡) in equation (3), as well as the DQN model. 
However, this model can be divided into two networks. 
The first one is the actor network which determines the 
action of the agent depending on the state 𝑠𝑡 , and the 
second one is the critic network which estimates the 
structure of the task. The combination of these two 
networks enables the estimation of 𝑄(𝑠𝑡)  (the value 
where the action and the state are given). Figure 1 
illustrates the concept of DDPG. 



Figure 1. Actor–Critic Networks in Deterministic 
Policy Gradient Algorithms (DDPG) 

When the function value is estimated in the DDPG 
model, the assembly of the action in response to the state 
{𝑎(𝑠𝑡)} and the Q-value function 𝑄(𝑠𝑡) are respectively 
replaced by the action policy [depending on the state 
𝜇(𝑠𝑡)] and the estimated conditional total net present 
value of rewards 𝐸(𝑠, 𝜇(𝑠)). This enables the division of 
the Q-value function into the actor and critic networks. 
The same as the DDPG model, this study adopts the actor 
and critic network system which estimates the agent’s 
action policy (actor) and the relationship between the 
agent’s action and rewards (critic) in the effort to 
estimate of the Q-value function. 

2.4 Robot Operating System 2 (ROS2) 
ROS2 is an integrative software platform that 

includes the tools and libraries that are necessary to 
develop robots. This study established the task execution 
environment of the real borrowing tasks of machines that 
was conducted by multiple agents who were already 
trained in the simulation by using the commands and 
instructions in ROS2. 

3 Models and Simulation 

3.1 Derivation of Multiagent Q-value 
Function 

First, the Bellman equation, which was presented in 
Subsection 2-1, is extended to the model which can be 
applied to the multiagent system. 

In a multiagent system, the competitiveness and 
altruism of tasks should be considered. This is because it 
is assumed that one’s choice will have some effect 
(reduce or increase total net present rewards) on other 
agents in the case in which multiple agents engage in 
their tasks collaboratively at the same time. For example, 
if two agents engage in a major task together, they can 

complete it within a short time. Alternatively, if one’s 
flow line disturbs other machines, this reduces the entire 
total net present value of rewards the agent can receive). 
Specifically, the reward 𝑟 that the agent can get in the 
state 𝑠 is determined by both the action of the agent itself 
𝑎𝑠  and the action of another agent 𝑎𝑝  if the number of 
engaging agents is equal to two (the same is true for the 
multi-agent systems that consist of more than three 
agents.) Hereafter, the action of the agent conducting the 
task itself is represented as 𝑎𝑠, and the action of another 
agent, who can be recognized as a partner from the 
perspective of the agent conducting the task itself, is 
represented as 𝑎𝑝 . This difference is very important to 
understand which action can be controlled or not by the 
focused agent. 

Considering the following points, the total net present 
value of the agent itself depending on the state 𝑠𝑡 , the 
assemble of the action of the agent itself 𝑎𝑠, and that of 
𝑎𝑝  (equation (1) in the single-agent system case) is 
represented as follows (5), 
𝐸(𝑠𝑡|𝑎𝑠 = 𝑎𝑠, 𝑎𝑝 = 𝑎𝑝)

= 𝑟(𝑠𝑡 , 𝑎𝑠 , 𝑎𝑝)

+ 𝛾 ∫ 𝑑𝑎𝑝,𝑡𝑤(𝑎𝑝,𝑡)
𝑎𝑝,𝑡∈{𝑎𝑝,𝑡}

[ max
{𝑎𝑠,𝑡}𝑡=1

∞
∑ 𝛾𝑡−1

∞

𝑡=1

𝑟(𝑠𝑡 , 𝑎𝑠,𝑡 , 𝑎𝑝,𝑡)] 

(5) 
Regarding the rewarding function, the reward that the 

agent can receive at time 𝑡  depends on 𝑠𝑡 , 𝑎𝑠, and 𝑎𝑝 ; 
therefore, the argument of the reward function is 
extended to these three elements. 

However, attention should be paid so that the argument 
of the left side is only 𝑠𝑡  because all  {𝑎𝑠,𝑡} and {𝑎𝑝,𝑡} 
values that emerge after the time point 𝑡 are determined 
uniquely at time point 𝑡 , including the probabilistic 
representation. This determination is because the partner 
agent is assumed that makes repeatedly the best judgment 
for itself (or the one which seemed to be the best at some 
specific time point); this helps the pruning of the 
transition tree. In addition, as the agent repeatedly makes 
the best choice for itself, this enables the pruning of the 
transition tree. Therefore, the total net present reward 
value can be determined by 𝑠𝑡 at any time point; this is 
the departure from the estimated multiagent Q-value 
function in this study. 

Meanwhile, the first term on the right side of equation 
(5) 𝑟(𝑠𝑡 , 𝑎𝑠, 𝑎𝑝)  is a function that depends only on 𝑠𝑡

because 𝑎𝑠  and 𝑎𝑝  are constant in this situation as the
left side is set to the conditional total net present value
where the actions 𝑎𝑠 and 𝑎𝑝 are selected at time point 𝑡.
However, regarding the second term 

max
{𝑎𝑠,𝑡}𝑡=1

∞
∑ 𝛾𝑡−1∞

𝑡=1 𝑟(𝑠𝑡 , 𝑎𝑠,𝑡 , 𝑎𝑝,𝑡)  is the function that 

depends on state 𝑠  and the assembly of its partner’s 
choices {𝑎𝑝,𝑡} because 𝑎𝑝,𝑡  remains in the equation (the 



argument 𝑎𝑠,𝑡  is deleted by the maximization function). 
Thus, the arguments are not unified if the right and left 
sides are integrated directly into the equation. 

Consequently, the integral of a function in a definite 
interval should be calculated to unify the arguments by 
multiplying it with the voluntary weighting function 
𝑤(𝑎𝑝,𝑡) (when the maximization function is considered 
as the integration of a function multiplied by the delta 
function 𝛿(𝑥), this can be regarded as the same variation 
as the single-agent Q-value derivation). In this situation, 
the range of integration is the entire range of {𝑎𝑝,𝑡}. 

The weighting function is an appropriate function 
based on the partner’s action 𝑎𝑝 . This weighting 
function corresponds to the idea of “belief” in game 
theory. Agents have some rational beliefs about the 
actions of others that exist outside their own 
optimization space (this means that they perform their 
own optimization by multiplying some of their 
appropriate weights by elements), and they determine 
their own choices. From this perspective, the belief is 
usually represented by the expression of the estimated 
choice probability of the partner’s action 𝑝(𝑎𝑝),  so the 
weighting function 𝑤(𝑎𝑝,𝑡)  in equation (5) can be 
replaced into 𝑤 (𝑝(𝑎𝑝)) . In this case, 𝑤 (𝑝(𝑎𝑝))  is 
determined voluntary such that 
∫ 𝑑𝑎𝑝,𝑡𝑤(𝑝(𝑎𝑝))

𝑎𝑝∈{𝑎𝑝}
= 1  is required following the 

definition of probability. 
Finally, like the situation of the single-agent version, 

the Q-value function in the multiagent system is 
represented by equation (6) by replacing the conditional 
total net present value of rewards with the Q-value 
function.  

𝑄(𝑠𝑡) = ∫ 𝑑𝑎𝑝 max
𝑎𝑠

𝑤(𝑝(𝑎𝑝)){𝑟(𝑠, 𝑎𝑠, 𝑎𝑝)

+ 𝛾𝑄(𝑠𝑡+1)}

(6) 

The next key point is to identify a way to determine the 
weights 𝑤 (𝑝(𝑎𝑝)) , i.e., the way to determine one’s 
belief according to assumptions for optimized actions of 
others. 

One way that seems to be rational from the 
perspective of game theory is to determine the weights 
simply based on the probability density function 
𝑤 (𝑝(𝑎𝑝)) = 𝑝(𝑎𝑝) . In this case, the right side of 
equation (6) is regarded as the expected value of the total 
net present value at time point 𝑡  depending on the 
partner’s choice 𝑎𝑝 . This study refers to the 
determination weighting approach as the expected action 
choice pattern (this determination way is the expression 
that allows the volatility to future events caused by other 
choices). 

Conversely, if the action choice probability of other 

agents’ 𝑝(𝑎𝑝) is fixed at some time point 𝑡 , it can be 
rationally assumed that the partner agent must just select 
the unique choice that maximizes the choice probability 
(and the Q-value for the partner) because a) the partner is 
exploring the best actions for itself during the training 
and b) the partner can select just one action in the 
transition from 𝑠𝑡 to 𝑠𝑡+1 . (The probabilistic expression 
can represent one’s choice; however, its action is not 
probabilistic but definitive). Thus, by using the delta 
function, 

𝑤 (𝑝(𝑎𝑝)) = 𝛿 (𝑎𝑝 −  𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑎𝑝))) (7) 

where, 

∫ 𝑑𝑥・𝛿 (𝑥 −  𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑎𝑝))) 𝑓(𝑥)
𝑥∈{𝑎𝑝}

= 𝑓 (𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝(𝑎𝑝))) 

(8) 

This study refers to this determination weighting 
approach as the maximum action choice pattern. Herein, 
two ways of choice determination were set, namely, the 
expectative and the maximum action choice patterns; in 
other words, the determination ways of agents’ beliefs. 
Additionally, this study discusses the relationship 
between the determination belief and the behavior of task 
execution represented by the swarms which were 
generated by the models. 

3.2 Multiagent Actor–Critic Estimation 
Network (MA-DDPG Model) 

As was presented by Silver et al. [7], the Q-value 
function was first replaced by the expression that 
depended on the self-action determination policy 𝜇𝑠(𝑠𝑡) 
and the partner’s action determination policy 𝜇𝑝(𝑠𝑡), as 
follows (10): 

(𝑠𝑡) ≅ 𝑄(𝑠𝑡 , 𝜇𝑠(𝑠𝑡), 𝜇𝑝(𝑠𝑡)) (9) 

According to equation (7), 
𝜇𝑠(𝑠𝑡) = 𝑎𝑠|𝑠=𝑠𝑡

= 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄(𝑠𝑡))

𝜇𝑝(𝑠𝑡) = 𝑓(𝑎𝑝)|𝑠=𝑠𝑡

(10) 

As mentioned before, this is because the self-action 
(which depends on 𝑠𝑡) can be determined definitively as 
it maximizes the Q-value of the agent itself. However, the 
partner’s action will be estimated by determining 
rationally the weighting parameters in the model in some 
way (this paper used the estimations performed 
according to the observations of the others during 
training based on past experiences and periodically 
substituted the outcomes to the model). In the situation 
presented in this study, agents could only predict some 
types of laws for the action choice depended on 𝑠𝑡 based 



on deep-learning networks. 
The multiagent actor–critic model that enabled the 

dynamic collaborated task execution in this study is 
shown in Figure 2. In the function estimation used in this 
study, the weighting function 𝑤(𝑝(𝑎𝑝)) was set out of 
the actor’s network (partner-action policy estimation 
network) because setting the output of this network as the 
estimated value of the partner’s action choice probability 
was more convenient for making the training labels based 
on past experiences, and the weighting function was 
multiplied during the transition from the actor’s network 
to the critic network. 

Figure 2. Multiagent Actor–Critic Estimation 
Network 

The appropriate training of these networks enables 
the estimation of the Q-values of given tasks and the 
entire output of the model. The training targets of the 
three networks (self-action determination network, 
partner-action estimation network, and critic network) 
were respectively the action which maximized the Q-
value at the time point 𝑡, the states-actions corresponding 
vectors which were stocked in the replay buffer (this 
enabled the estimation of the action choice probability, 
that is, the action policy), and the Q-value which was 
calculated based on the target networks. The adopted loss 
function of the critic model was the mean squared error 
(MSE) and the previous research findings, and the 
adopted loss functions of two actor networks were 
categorical cross-entropy functions because the actions 
were discretized in the conducted simulations. 

Adopting the model shown in Section 3.2, the 
multiagent actor–critic estimation networks enabled the 
construction task execution based on dynamic 
collaborated cooperation between the agents. 

3.3 Cooperation Fee 
Changing the determination mechanism and the 

cooperation fee are ways to encourage the agents to 
cooperate. 

The cooperation fee is a way of distributing its 
rewards to other agents as compensation for the 

commitment of others. For example, the study by 
Miyakzaki [7] focused on the application of reward 
allocation methods to other agents as in indirect 
compensation for the commitment of others. This study 
also focused on the way of indirect rewards as a way of 
encouraging the agents to cooperate, and considered the 
effects associated with the use of the cooperation fee by 
distributing a certain proportion of rewards to the other 
agents at the time one agent received rewards (in cases in 
which an agent received a chunk of the soil or discharged 
it, or in the case of the borrowing task on which this study 
was focused on). The cooperation fee was considered as 
the distribution of the rewards in the task, and is defined 
based on equation (11), 

𝑟𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 =  𝑟𝑑𝑖𝑟𝑒𝑐𝑡 × 𝛿 (11) 

where 𝛾𝑑𝑖𝑟𝑒𝑐𝑡 represents the rewards that will be received 
directly by the task, and 𝛿 is a dummy binary variable 
which takes the value of one in the case in which the 
cooperation fee becomes available and the value of zero 
in the case the cooperation fee is not available. This study 
considered the effect of changing the availability of 
cooperation fee on the emergence of cooperative 
behaviors (the result is described in Section 4.1.2). 

3.4 Construction Task Simulation 
This study set a borrowing task of machine dump cars 

as an example of simulated and simplified construction 
cooperation tasks.  A dump car received a clump of beads 
from an excavator and the dump carried it to a particular 
filling area in the borrowing task. This effort was 
completed by two dump machines, and the clump of 
beads was alternatively substituted with clumps of sand. 
The task was finished when a specific quantity of beads 
was carried. The training task (for machine learning) was 
pursued and completed based on computer simulations, 
and the actual execution environment was designed by 
using ROS2 commands. The overhead view of the site is 
shown in Figure 3. Solid lines in Figure 3 represent flow 
lines through which the machines can pass. 

Figure 3. Overhead view of task execution area 

3.5 Simulation and Learning Flow 

Figure 4 depicts the learning flow diagram of agents. 



Figure 4. Flow Diagram of Training Agents and 
Simulations 

Based on this flow diagram, the swarms of trained 
agents were generated, and their behaviors were observed 
at each point. The scores of the swarms that could finish 
the test task in 200 time steps were saved and the 
transition of their scores was observed. The score of the 
task execution was defined according to equation (12) by 
considering that the earlier agents could finish the task 
and that they had high scores; negative scores were not 
recorded. 

{
𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 = 10000 −  𝑇𝐿 

𝑇𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 = 200 − 𝑇𝑆 
where TL is the time of the learning task 
execution and TS is the testing task execution. 

(12) 

4 Results and Discussion 

4.1 Simulation Results 

4.1.1 Choice theory differences 
Figure 5 describes the learning and testing results of 

the performances which were observed by the swarms 
generated by the expectative action choice model 
(presented in Section 3.2).  

(a) 

(b) 

Figure 5. a) Learning Score Transition and b) Test 
Score Transition in the Expectative Action Choice 
Model 

Figure 6 describes the learning and test results of the 
performances which were observed by the swarms 
generated by the maximum action choice model which 
was presented in Section 3.2 (the cooperation fees of 
models used in Figures 5 and 6 were both 60% of their 
maximum values to eliminate the effects of cooperation 
fee changing; 𝛿 = 0.6 was thus used in equation (11)).

(a) 

(b) 
Figure 6. a) Learning Score Transition and b) Test 
Score Transition in the Maximum Action Choice 
Model 

Table 1. Comparison of the simulation results of the 
expectative action choice and maximum models  

Model Expectative 
model 

Maximum 
model 

Number of 
episodes 

161 191 

Number of 
swarms which 

finished the test 

41 
(25.5% of all 

swarms) 

24 
(12.6% of all 

swarms) 
Number of 

swarms with 
high score 

(>100) 

0 
(0.0% of tested 

swarms) 

5 
(20.8% of 

tested swarms) 

By comparing Figures 5 and 6, the behavioral 
differences of agents that were attributed to the weighting 
function 𝑤 (𝑝(𝑎𝑝)) differences were considered. First, 
regarding the score that was observed in learning, the 
fluctuation of the scores was less in the expectative action 
choice model (Figure 5a) than that in the maximum 



action choice model (Figure 6a); thus, the learning scores 
were more stable in the executive action choice model. 
These differences were considered to be attributed to the 
facts that a) the executive action choice was more 
redundant to the exploration randomness compared with 
the maximum action choice and b) the probability that the 
swarms could execute the borrowing task without being 
affected by the external elements was higher. 

Conversely, a comparison of Figures 5b and 6b shows 
the probability that the generated swarms had higher test 
scores in the case of the maximum action choice model 
than those in the case of the expectative action choice 
model. The borrowing task could be finished in a shorter 
period if two agents were cooperative (if they could 
concede their flow lines to each other) because they could 
execute the task in parallel without disturbing each other. 
Therefore, it was considered that in the case of the 
maximum action choice model, the probability of 
generating more cooperative swarms was higher 
compared with that associated with the expectative action 
choice model. This was because the weighting function 
of the maximum action choice model enabled the agents 
to expect the choices of others to make the high-risk and 
high-return choices. Additionally, this point was 
considered to contribute to the generation of agents that 
could finish the task within a shorter period. 

4.1.2 Cooperation Fee Differences 
The effect of the cooperation fee which was discussed 

in Section 3.3 was also analyzed. Figure 7 shows the 
agents’ outcomes in the case in which the cooperation fee 
was not available ( 𝛿 = 0  in equation (11)). The 
corresponding agents’ outcomes in the case in which the 
cooperation fee was available (𝛿 = 1) is shown in Figure 
8. 

(a) 

(b) 
Figure 7. a) Learning Score Transition and b) Test 
Score Transition in the Case Wherein the 

Cooperation Fee was Unavailable (𝛿 = 0) 

(a) 

(b) 
Figure 8. a) Transition of Learning Score 
Transition and b) Test Score Transition in the 
Case Wherein the Cooperation Fee was Available 
(𝛿 = 1) 

Table 2. Comparison of the simulation results of the 
expectative action choice and maximum models 

Cooperation fee 
availability  

Not available 
(𝛿 = 0) 

Available 
(𝛿 = 1) 

Number of 
episodes 

206 117 

Number of 
swarms which 

finished the test 

64 
(31.1% of all 

swarms) 

16 
(13.7% of all 

swarms) 
Number of 
high-score 

swarms (>100) 

34 
(53.1% of 

tested swarms) 

0 
(0.0% of 

tested swarms) 
In the case in which the cooperation fee was available, 

the task was not executed cooperatively compared with 
the case in which the cooperative fee was unavailable. 
This seemed to be because the cooperation fee may affect 
positively the degree of sabotage. When the cooperation 
fee was available, the agents could obtain the rewards 
without engaging in the task; accordingly, this may lead 
to the sabotage of the agents. Conversely, in the task 
design of this study, the situation in which all the agents 
engaged enthusiastically in their tasks made the total 
borrowing task time shorter. Therefore, the dedication to 
its task  seemed to assign a cooperative effect to the task. 

Based on the experiments in Subsections 4.1.1 and 
4.1.2, the maximum action choice model and the 
unavailability of the cooperation fee were the primary 
contributory factors in the achievement of increased 
machine cooperation in borrowing tasks. 



4.2 Experiments in an Actual Environment 
Using the conclusion that was reached in Section 4.1 

and simulation results, a swarm was generated based on 
the learning flow diagram and it was adequately trained. 
The borrowing outcomes using radio-controlled 
machinery in an actual environment are shown in Figure 
9. 

Figure 9. Task Execution in an Actual 
Environment 

5 Conclusion 
This study structured a determination algorithm that 

enabled the autonomous operation of machines in the 
construction field, focused on a method of reinforcement 
learning that encouraged agents to obtain an autonomous 
determination model by repeating training to achieve 
dynamic collaboration in the construction field, and used 
game theory to represent cooperation mathematically. In 
the borrowing task set as a virtual step of the construction 
task in this study, agents could determine cooperative 
choices following the model of the maximum action 
choice in the case in which the cooperation fee was 
unavailable. We verified that agents could complete set 
tasks within a shorter time by structuring their 
determination models cooperatively. 

In this study, we developed a globally optimizing 
method of realizing an optimized multiagent system that 
enabled agents to determine each action efficiently in an 
environment that changes depending on the actions of 
others without coordination and performed a virtual step 
of an autonomous construction task. The findings of this 
study indicate that an agent can be encouraged to acquire 
optimized decisions by applying game theory to a deep-
learning model in an event that the interaction of multiple 
agents is considered. This approach will enable 
cooperative agents to easily achieve a single construction 
project. 

However, regarding the volatility of a future event, 
the uncertain transition of an environment caused by the 
uncertainty of the observation can also be considered in 
addition to the uncertainty caused by the actions of others. 
Such uncertainty can be addressed by creating an 

elaborate building information modeling (BIM) model 
and setting appropriate weightings to the uncertainty of 
the environment. In the latter method, the Bellman 
equation, which describes a game with complete 
information, must be extended to an equation that can 
represent a game with incomplete and uncertain 
information. Further, improvement is required, as the 
game theory can contribute to achieving a sufficiently 
autonomous construction. 
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